Computer Vision Based Automatic Extraction and Thickness Measurement of Deep Cervical Flexor from Ultrasonic Images

نویسندگان

  • Kwang-Baek Kim
  • Doo Heon Song
  • Hyun Jun Park
چکیده

Deep Cervical Flexor (DCF) muscles are important in monitoring and controlling neck pain. While ultrasonographic analysis is useful in this area, it has intrinsic subjectivity problem. In this paper, we propose automatic DCF extractor/analyzer software based on computer vision. One of the major difficulties in developing such an automatic analyzer is to detect important organs and their boundaries under very low brightness contrast environment. Our fuzzy sigma binarization process is one of the answers for that problem. Another difficulty is to compensate information loss that happened during such image processing procedures. Many morphologically motivated image processing algorithms are applied for that purpose. The proposed method is verified as successful in extracting DCFs and measuring thicknesses in experiment using two hundred 800 × 600 DICOM ultrasonography images with 98.5% extraction rate. Also, the thickness of DCFs automatically measured by this software has small difference (less than 0.3 cm) for 89.8% of extracted DCFs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extraction of the Longitudinal Movement of the Carotid Artery Wall using Consecutive Ultrasonic Images: a Block Matching Algorithm

Introduction: In this study, a computer analysis method based on a block matching algorithm is presented to extract the longitudinal movement of the carotid artery wall using consecutive ultrasonic images. A window (block) is selected as the reference block in the first frame and the most similar block to the reference one is found in the subsequent frames. Material and Methods: The program was...

متن کامل

Automatic Lane Extraction in Hemoglobin and Serum Protein Electrophoresis Using Image Processing

Image analysis is an image processing technique that aims to extract features or information from images. Image analysis in medicine has a special place because is a basis for disease diagnosis for physicians. Electrophoresis is a laboratory separating technique. Electrophoresis images are created during the electrophoresis process. Serum protein and hemoglobin electrophoresis test are the ...

متن کامل

Automatic Lane Extraction in Hemoglobin and Serum Protein Electrophoresis Using Image Processing

Image analysis is an image processing technique that aims to extract features or information from images. Image analysis in medicine has a special place because is a basis for disease diagnosis for physicians. Electrophoresis is a laboratory separating technique. Electrophoresis images are created during the electrophoresis process. Serum protein and hemoglobin electrophoresis test are the ...

متن کامل

Automatic Road Detection and Extraction From MultiSpectral Images Using a New Hierarchical Object-based Method

Road detection and Extraction is one of the most important issues in photogrammetry, remote sensing and machine vision. A great deal of research has been done in this area based on multispectral images, which are mostly relatively good results. In this paper, a novel automated and hierarchical object-based method for detecting and extracting of roads is proposed. This research is based on the M...

متن کامل

Similarity measurement for describe user images in social media

Online social networks like Instagram are places for communication. Also, these media produce rich metadata which are useful for further analysis in many fields including health and cognitive science. Many researchers are using these metadata like hashtags, images, etc. to detect patterns of user activities. However, there are several serious ambiguities like how much reliable are these informa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational and mathematical methods in medicine

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016